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Online algorithm for aggregating experts’
predictions with unbounded quadratic loss

A. A. Korotin, V. V. V’yugin, and E.V. Burnaev

We consider the problem of online aggregation of experts’ predictions with a
quadratic loss function. At the beginning of each round t = 1, 2, . . . , T , experts
n = 1, . . . , N provide predictions γ1

t , . . . , γN
t ∈ H (where H is a Hilbert space).

The player aggregates the predictions to a single prediction γt ∈ H. Then nature
provides the true outcome ω ∈ H. The player and the experts n = 1, . . . , N
suffer the losses ht = ∥ω − γt∥2 and lnt = ∥ω − γn

t ∥2, respectively, and the next
round t + 1 begins. The goal of the player is to minimize the regret, that is,
the difference between the total loss of the player and the loss of the best expert:
RT =

∑T
t=1 ht −minn=1,...,N

∑T
t=1 lnt .

Online regression is a widespread special case of this problem: the γn
t and ωt

are real numbers (the predictions and the outcome) and H = R ([1], § 2.1). A more
general case is the functional or probabilistic forecasting, for example, where the
γn

t and ωt are probability densities, that is, elements of H = L 2(RD) (see [4]).
The problem of online prediction with experts’ advice is considered in game

theory, machine learning [1], and online optimization [3]. Existing aggregating
algorithms provide strategies which guarantee a constant upper bound on the regret
but assume that the losses are bounded. For example, if lnt ⩽ B2 for all t and n, then
the algorithm in § 2.1 of [1] guarantees a T -independent bound RT ⩽ O(B2 log N).
However, the algorithm requires knowing B beforehand.

In this paper, we propose an algorithm for aggregating experts’ predictions which
does not require a prior knowledge of the upper bound on the losses. The algorithm
is based on the exponential reweighing of experts’ losses.

Parameters: game length T , number of experts N , Hilbert space H.
B†

0 ← 0; Ln
0 ← 0 for n = 1, . . . , N ;

for t = 1, 2, . . . , T do
Experts n = 1, . . . , N provide predictions γ1

t , . . . , γN
t ∈ H;

Bt ← max
(
B†

t−1, maxn,n′ ∥γn
t − γn′

t ∥
)
; ηt ← 1/[2(Bt)

2];
wn

t ← exp(−ηtL
n
t−1)/

∑N
n′=1 exp(−ηtL

n′
t−1);

Player combines the predictions γt ←
∑N

n=1 wn
t · γn

t ∈ H;
Nature reveals the true outcome ωt ∈ H;
Player and experts suffer losses ht = ∥ωt − γt∥2 and lnt = ∥ωt − γn

t ∥2;
B†

t ← Bt; Ln
t ← Ln

t−1 + lnt for n = 1, . . . , N ;
if maxn

√
lnt > B†

t then
B†

t ←
√

2maxn

√
lnt ;

Algorithm 1: player’s strategy when the bound on the losses is not known
beforehand.
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The proposed algorithm assigns weights to the experts proportionally to the
inverse exponential of their cumulative losses from the previous steps. The weights
are used to perform linear (convex) aggregation of predictions. The learning rate
(the parameter η of the algorithm) changes dynamically, enabling the algorithm to
adapt to the maximum of the observed losses.

Theorem 1. The regret admits the estimate RT ⩽ O
(
maxt,n lnt · (log N + 1)

)
for

Algorithm 1.

Proof. Consider the step t. Let Ht = Span{ωt, γ
1
t , . . . , γN

t }, a (⩽ N+1)-dimensional
linear subspace of H, and let

St =
N⋂

n=1

{γ ∈ Ht : ∥γ − γn
t ∥ ⩽ Bt},

that is, St is the convex set of points γ ∈ Ht which are (⩽ Bt)-close to all the
predictions γ1

t , . . . , γN
t . Let Γt = ConvexHull{γ1

t , . . . , γN
t }. Note that Γt ⊂ St.

(This follows from the fact that Bt ⩾ maxn,n′ ∥γn
t − γn′

t ∥ by the definition of Bt in
Algorithm 1.)

Let ⌊ωt⌋ be the projection of ωt on St. We define ft : Γt → R by ft(γ) =
∥γ − ⌊ωt⌋∥2. For any γ ∈ Γt we have ∥γ − ⌊ωt⌋∥ ⩽ Bt, so by Lemma 4.2 in [3], we
conclude that ft is an (ηt = 1/[2(Bt)2])-exponentially concave function. Thus,

exp(−ηtf(γt)) ⩾
N∑

n=1

wn
t exp(−ηtf(γn

t )),

where γt is the aggregated prediction of the player. We denote ft(γt) = ∥γt−⌊ωt⌋∥2
by ⌊ht⌋ and f(γn

t ) = ∥γn
t − ⌊ωt⌋∥2 by ⌊lnt ⌋, and we obtain the inequality

exp(−ηt⌊ht⌋) ⩾
N∑

n=1

wn
t exp(−ηt⌊lnt ⌋).

For η > 0 we define

⌊mt⌋(η) = −η−1 log
N∑

n=1

wn
t exp(−η⌊lnt ⌋).

To begin with, it follows from the previous paragraph that ⌊ht⌋ ⩽ ⌊mt⌋(ηt). Next,
for η > 0 we define

mt(η) = −η−1 log
N∑

n=1

wn
t exp(−ηlnt ).

Since ⌊ωt⌋ is the projection of ωt on the convex set St, it follows that ⌊lnt ⌋ =
∥γn

t −⌊ωt⌋∥2 ⩽ ∥γn
t −ωt∥2 = lnt . Thus, for any η > 0 we have mt(η) ⩾ ⌊mt⌋(η). In

particular, for η = ηt we have ⌊ht⌋ ⩽ ⌊mt⌋(ηt) ⩽ mt(ηt).
Let us prove that ht ⩽ ⌊ht⌋ + (B†

t )2 − (Bt)2. If ωt ∈ St, then ωt = ⌊ωt⌋,
ht = ⌊ht⌋, and B†

t = Bt, which results in the desired inequality. But if ωt /∈ St,



976 A.A. Korotin, V.V. V’yugin, and E.V. Burnaev

then maxn

√
lnt > Bt and (B†

t )2 = 2maxn lnt > maxn lnt +(Bt)2 by the definition in
Algorithm 1. Thus, ⌊ht⌋+ (B†

t )2 − (Bt)2 > ⌊ht⌋+ maxn lnt ⩾ maxn lnt ⩾ ht, where
the last inequality follows from the convexity of the quadratic function ft and the
fact that γt ∈ Γt.

We combine the derived inequalities and conclude that

ht ⩽ mt(ηt) + (B†
t )

2 − (Bt)2.

Summing over t = 1, 2, . . . , T , we get that

T∑
t=1

ht ⩽ (B†
T )2 +

T∑
t=1

mt(ηt).

Note that η1 ⩾ η2 ⩾ · · · ⩾ ηT is a non-increasing dynamic learning rate. By
Lemma 2 in [2],

T∑
t=1

mt(ηt) ⩽ −η−1
T log

T∑
t=1

N−1 exp(−ηT Ln
T ).

The latter quantity does not exceed

−η−1
T log

(
N−1 exp(−ηT min

n
Ln

T )
)

= η−1
T log N + min

n
Ln

T .

From this we immediately obtain a regret bound for our algorithm:

T∑
t=1

ht −min
n

Ln
T ⩽ η−1

T log N + (B†
T )2 = 2(Bt)2 log N + (B†

t )
2 ⩽ (2 log N + 1)(B†

t )
2.

Note that
B†

t ⩽ max
(
max
t,n

∥γn
t − γn′

t ∥,
√

2 max
t,n

√
lnt

)
.

By the triangle inequality,

∥γn
t − γn′

t ∥ ⩽ ∥γn
t − ωt∥+ ∥γn′

t − ωt∥ =
√

lnt +
√

ln
′

t ⩽ 2 max
n

√
lnt

for any t, n, and n′. Thus, B†
T ⩽ 2 maxn,t

√
lnt , and the final regret bound is

T∑
t=1

ht −min
n

Ln
T ⩽ 4(2 log N + 1) max

t,n
lnt = O(max

t,n
lnt · (log N + 1)).
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